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Abstract—Recent advances in piezoresistive materials have
opened the possibility of developing pressure sensitive flexible
mats that cover large areas. They are composed of arrays of
sensitive cells. However, in many configurations proposed in the
literature, the measurement of a single cell does not recover the
cell resistance itself but the equivalent resistance between the
row and column conductive strips that select it. If this effect is
not corrected, unloaded regions can appear with non negligible
pressure, as a kind of ghost object. Diodes can be placed to
overcome the problem, but this makes the fabrication more
complex especially for prototypes. In this paper we propose a
novel software solution based on a circuit analysis of the mat.
The set of cell resistances is obtained from the set of equivalent
resistances between row and columns. Several algorithms are
compared. For simulated values of the array, the true cell
resistance can be recovered with a great accuracy. A good
compromise between execution speed and error is achieved by
a Newton-Krylov nonlinear solver. Nevertheless, this algorithm
presents convergence problems when facing values of a real mat.
In this case a fixed-point formulation is more appropriate. For
16x16 arrays, it can achieve relative errors with a mean value of
0.0258 in less than 0.1 s running on a regular PC. The removal
of ghost objects is also shown visually.

Index Terms—Piezoresistive materials, pressure sensitive mat,
circuit analysis, Velostat

I. INTRODUCTION

IN recent years the availability of flexible pressure sensor

mats has offered new opportunities leading to the devel-

opment of a wide range of applications in health, artificial

intelligence, robotics and games among others. This availabil-

ity has been boosted by the development of new materials

and fabrication processes for flexible pressure sensors [1],

[2], [3], [4]. The pressure transduction principles are mainly

based on piezoresistivity, piezoelectricity or change of capac-

itance. In this work we focus on arrays of sensors based on

piezoresistivity. The resistance of the material changes when

a pressure is applied on it. A detailed model for polymer

conductive materials is found in [5]. A linear dependence can

be assumed as a reasonable approximation for the conductance

versus pressure curve [5], [6].

A typical cell is composed of 2 electrodes and a sensing

material. Arrays of sensors can also be built to cover wider

surfaces. In many cases, there is a common structure com-

posed of orthogonal conductive lines to form such a kind of
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arrays. Lines in top and bottom layers are orthogonal and

the acquisition system scans them in order to access each

cell. For instance in [6] a pressure mat for tele-home care

applications was presented (32x32 array covering 39x39 cm2).

The sensor was fabricated by embroidering silver-coated yarns

on a light cotton fabric and creating pressure sensitive spots

by stamping a conductive polymer at the crossing point of

stitches. The acquisition electronics used a transimpedance

amplifier, so that the output was proportional to the pressure. In

[7] an application for detecting sitting postures was presented

(10x10 inch2, 1/8 inch space between cells). The layer of

sensitive material was made of fiber-based yarn coated with

piezoelectric polymer. The application of a force led to a

squeezing of intrafibers. The buses in the top and bottom layer

were orthogonal. They were scanned using analog switches.

To read a given spot a row was connected to Vcc and a column

to an ADC and to ground via an offset resistor. The column

voltage was read and the resistance of this voltage divider

circuit obtained. In [8] another similar example can be found.

An 80x80 matrix was composed of a thin layer of conductive

polymer fiber sheet positioned between 80 parallel stripes of

conductive foil on each side, spaced 1 cm apart. The mat

was used for detecting gym exercises. In [9] a 32x32 sensor

matrix was constructed with Velostat material within a top

and a bottom electrode layers. The authors of this paper used

the sensor for footprint evaluation. The sensor presented in

[10] was also based on two conductive layers and a sensitive

layer. In the conductive layers, the lines were made by screen

printing technology. The pressure sensor layer was a linen

cloth embedded with a 32x32 sensor array. The size of the

mat was 38.5x36 cm2, approximately the size of an adult’s

chest. The mat was used for unobtrusive sleep monitoring. In

[11] a device consisting of two composite films was presented.

Each film in turn was composed of a polydimethylsiloxane

layer, a Cr/Au layer and a patterned conductive film. Each

tactile sensing cell included two conductive polymer films

with microdomes. The polymer films were fabricated with

a variant of the soft-lithography technique. The proposed

method achieved high sensitivity and isolation between cell

arrays. The technique was demonstrated in an 8x8 array of

sensors, with cells separated by 2 mm. On the other hand,

in [12] the electrodes were fabricated with an interdigital

structure and the conductive polymer was placed on top of

them, providing a contact with decreasing resistance as force

was applied. A 5x5 flexible force sensor array was shown,

covering an area of 84x84 mm2.

Regardless of the sensor material, if the conductive strips
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run along the whole mat, they connect all the cells in a

row or column. In this case, an annoying crosstalk effect

between spots appears. In a square of four cells, if three

of them are pressed the fourth one also appears as slightly

pressed when scanning it. This is due to the current flow

through the path formed by the three pressed cells [13]. As

a consequence, objects appear often as rectangular in shape.

In [7] a smoothing algorithm based on Gibbs sampling was

proposed. It tended to bring values of suspicious pixels close to

the average of the neighbor sites. However, this algorithm only

tackled mechanical coupling and not the coupling between

separated sites. Cheng et al. [14] used a large mat for activity

recognition. A crosstalk effect was acknowledged and a kind

of image processing algorithm was proposed. However neither

the crosstalk origin nor the details of the algorithm were

discussed in length. On the other hand, hardware solutions

can also be adopted. Diodes can be placed in series with each

cell to avoid the current flow. This is a typical solution in

regular keyboards and was also proposed for pressure sensors

in [15]. The solution has been adopted in recent designs [16],

[9]. The leak currents can also be partially diverted by setting

pull-downs resistors in electrodes that are not being addressed.

Nevertheless, this does not remove completely the effect.

Another option is to set the unused lines to a suitable voltage

value, so that the leak currents are completely diverted. In the

zero potential solution adopted in [6], [17], [13] the unused

lines were set to ground (either directly or as an imaginary

zero potential of a transimpedance amplifier). This gives an

alternative path for the unwanted currents. However, again

this implies the use of more components: one driver or an

output amplifier per line. The effect can also be eliminated by

building completely isolated cells with their own connections,

or at least separated by regions to reduce it. For instance, in

the 3x3 array shown in [18] there was a common electrode

on one side of the array, and an output line for each sensitive

cell on the other side. The same electrode configuration was

used in [19] for a 11x13 pixel array. Meyer et al. [20] also

configured a single common electrode and then a separated

wire for each site. This required 3 different layers to properly

route the 240 signals of their prototype. Handling this number

of connections is clearly cumbersome for large arrays.

In this paper, we propose a software solution to the crosstalk

problem without relying on additional components. It is theo-

retically well-grounded in the field of circuit analysis. To the

best of our knowledge, this is the first time an approach of

this kind is proposed for pressure sensitive mats.

The rest of the paper is structured as follows. In section

II the problem is stated formally using circuit analysis and

several numerical approaches to solve it are presented. In

section III we present results from simulated arrays, in which

ideal conditions for the algorithms can be tested, and from a

home-made mat. Finally, section IV is devoted to conclusions.

II. THEORETICAL BACKGROUND

A. Problem statement

The pressure sensor array is composed of several cells.

Figure 1 shows an example of a 2x2 array. The resistance
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Fig. 1. Example of a 2x2 array. In the top figure the (1, A) cell is connected
to a voltage divider to measure it. The bottom figure shows the equivalent
resistor seen from nodes (1, A).

of the cell intersecting row i and column j is denoted as

rji and its conductance as gji = 1/rji . To measure one of

the cells, typical acquisition systems include multiplexers and

demultiplexers that connect a given row and column to some

nodes of the measurement circuit. However, since rows and

columns cover all the mat, the measured resistance is also

influenced by the rest of the network. For instance, figure

1a shows a typical setup in which a simple voltage divider

is considered to measure cell (1, A). The current will not

only flow through rA1 but also through the series resistor

rA2 + rB2 + rB1 . This current flow could be avoided by placing

diodes in series with each cell. However, in this paper we are

going to consider software solutions that do not require any

additional hardware.

Regardless of the signal conditioning circuit used to mea-

sure resistance (voltage divider or transimpedance amplifier),

the equivalent resistance between row i and column j will be

measured if those nodes were connected to it. The equivalent

resistance between row i and column j is denoted as Rj
i and its

conductance as Gj
i = 1/Rj

i . For instance, figure 1b shows the

equivalent resistor between the first row and the first column

for a 2x2 array. However, it is very difficult, if not impossible,

to find easy rules of resistor combination (parallel or series) to

obtain the equivalent resistance value except for the 2x2 case.

In fact, although the matrix arrangement may suggest that a

corner cell is different from a center cell, all of the locations
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Fig. 2. Schematic representation of the nodes in a 3x3 array. The links have
a resistance value (not shown for simplicity).

are equivalent since each row is connected to all the columns

and vice versa. Figure 2 represents a 3x3 array to highlight

this point. Each link has an associated resistance not shown

for simplicity.

Thus, the equivalent resistances Rj
i (or conductances Gj

i )

are measured by scanning the rows and columns in the data

acquisition system. The problem is to find the cell resistances

rji (or conductances gji ) from them, so that the pressure in

each cell can be determined.

B. Circuit Analysis of the Resistor Array

A standard circuit analysis of the network is applied in this

section to find the relation between the set of conductances Gj
i

and the set of conductanges gji . For the sake of simplicity, first

a 3x3 network is considered as an example, figure 3. Formally,

the equivalent resistance between row 2 and column C can be

obtained by solving the circuit of the figure, in which a current

source is placed between colum C and row 2. If Vi denotes the

voltage at row i and V j the voltage at column j, the equivalent

conductance is:

GC
2 =

1

RC
2

=
Iref

V C − V2

(1)

Iref is just a multiplicative constant in the solution that can

be set to one in the implementation.

Without loss of generality, row 1 can be taken as reference

so that V1 = 0. The circuit can be solved by applying

Kirchoff’s law to the rest of the nodes. The solution is found

by solving the following linear system:

CV = I (2)

where V is the vector of unknown voltages V =
(V2, V3, V

A, V B, V C)T, I = (−Iref , 0, 0, 0, Iref)
T and C is

the conductance matrix of the linear system of equations:

C =













g2 0 −gA2 −gB2 −gC2
0 g3 −gA3 −gB3 −gC3
−gA2 −gA3 gA 0 0
−gB2 −gB3 0 gB 0
−gC2 −gC3 0 0 gC













where the shorthand notations gi =
∑

j g
j
i and gj =

∑

i g
j
i

have been used. For instance: g3 = gA3 + gB3 + gC3 .

After solving equation 2, the equivalent resistance and

conductance are obtained from equation 1.

3
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Fig. 3. Circuit to determine the equivalent resistance between row 2 and
column C in a 3x3 array.

To find the equivalent resistance of any other pair of row-

column nodes, the only vector that has to be changed in

equation 2 is I. For instance, to find RA
3 , the intensity vector

I = (0,−Iref , Iref , 0, 0)
T has to be used, while to find RC

1

the intensity vector is I = (0, 0, 0, 0, Iref)
T . Note that in the

latter case there is no −Iref term in the intensity vector since

the node voltage V1 is taken as ground so that it does not

appear in the unknown vector V.

Let us generalize for an NxM resistor array. Assuming that

V1 = 0 (ground), there will be N+M-1 equations. To find

the equivalent resistance between row i and column j, the

following equations must be solved to find node voltages:

M
∑

q=1

gqp(Vp − V q) = −Irefδpi, p = 2, . . . , N (3)

gq1V
q +

N
∑

p=2

gqp(V
q − Vp) = Iref δqj , q = 1, · · · ,M (4)

where δkl is the Kronecker delta (1 if k = l, 0 otherwise).

Then the equivalent conductance is found as:

Gj
i =

Iref
V j − Vi

(5)

These equations allow finding numerically the relation be-

tween the cell conductances and the equivalent conductances

between the nodes. If G is the matrix of equivalent conduc-

tances Gj
i and g the matrix of all cell conductances gji , the

theoretical relation G = F(g) can be found numerically using

the algorithm shown in figure 4. For each component of the
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Input: matrix of cell conductances gji , i = 1, · · · , N j =
1, · · · ,M
Output: matrix of equivalent conductances Gj

i , i =
1, · · · , N j = 1, · · · ,M
for all pairs (i, j) do

Solve equations 3 and 4

Gj
i ←

Iref
V j

−Vi

end for

Fig. 4. Algorithm to find equivalent conductance matrix G = F(g).
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Fig. 5. Schematic representation the lowest conductance path between nodes
1 and A.

equivalent conductance matrix, the notation Gj
i = F j

i (g) will

be used in this paper.

C. Proposed numerical solutions

The problem is finding the matrix g from the experimental

values of the equivalent conductances G, that is, to invert the

function G = F(g) defined in figure 4. In this section several

approaches are proposed. The algorithms were implemented

in Python, relying on the scipy package (version 0.19.1) [21]

whenever possible. The algorithms were run on a regular PC

running Ubuntu 18.04 (Intel(R) Core i5-4570 CPU, 3.2 GHz,

4G RAM).

1) Heuristic approach: The heuristic approach is a crude

approximation. From the multiple paths that the current can

flow between row i and column j, only the intersection cell

and the lowest resistance path are taken into account. To find

the lowest resistance path, the approximation gqp ≈ Gq
p is

considered. For instance, in figure 5 let us assume that the

lowest resistance path between row 1 and column A is the path

highlighted by the thicker links: row 1 to column B, column

B to row 3 and row 3 to column A. Then, it is assumed that

the resistance between row 1 and column A can be calculated

as the parallel of the cell resistance rA1 and the lowest path

resistance rB1 + rB3 + rA3 . Therefore, in terms of conductances:

GA
1 ≈ gA1 +

(

1

gB1
+

1

gB3
+

1

gA3

)

−1

(6)

Then, a further assumption is taken in the right hand side:

gB1 ≈ GB
1 , gB3 ≈ GB

3 , gA3 ≈ GA
3 . Thus, the cell conductance

can be found from equation 6:

gA1 = GA
1 −

(

1

GB
1

+
1

GB
3

+
1

GA
3

)

−1

(7)

Thus, the heuristic approximation is a very fast single step

correction. It also ensures that gji < Gj
i , which is true in

general. However, it is not based on a formal approximation

to the problem and the assumptions are not justified in general.

2) Least square solution: The problem can also be stated

as a least square problem. The elements of g are found by

minimizing the following cost function:

‖G− F(g)‖2 =

N
∑

i=1

M
∑

j=1

‖Gj
i − F j

i (g)‖
2 (8)

The cell conductances are also subjected to an additional

constraint:

0 ≤ gji (9)

To implement this approach, the functions

scipy.optimize.leastsq and scipy.optimize.least squares

[21] were used. The first one is based on a Levenberg-

Marquardt algorithm. It does not handle the constraints but in

some cases they are not required as shown in the experimental

section. The second one can handle constraints and uses a

Trust Region Reflective algorithm [21].

3) Nonlinear equation solver: Newton-Krylov: The prob-

lem can also be stated as the solution of the nonlinear equation:

G− F(g) = 0 (10)

Among the solvers offered by the scipy package, the one

that did converge in a reasonable amount of time was the new-

ton krylov solver of the package scipy.optimize (more details

about convergence problems are presented in the experimental

section). According to the documentation of the package,

these methods can deal with large nonlinear problems. This

is because the kind of methods implemented by this function

require only evaluating the Jacobian-vector products, which

are conveniently approximated by a finite difference [22].

4) Nonlinear equation solver: fixed-point formulation:

The nonlinear equation can also be stated as a fixed-point

formulation. Generally speaking, fixed-points equations are

in the form x = H(x), where x is a vector. The Picard

iterations can be used to solve the problem, finding the next

root approximation, xn+1, from the previous one xn [22]:

xn+1 = H(xn) (11)

To secure convergence, the Picard iteration must be damped

in many cases by introducing the β parameter [22]:

xn+1 = (1− β)xn + βH(xn) (12)

Returning to our problem, it can also be formulated in this

way. For that purpose the equation to be solved is first set as

0 = G−F(g). Then, adding g to both the left and right sides

leads to:

g = g +G− F(g) (13)

which is the standard form to apply a solution based on Picard

iterations as follows:
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Input: G,β, ftol and nmax and initial iterate (g0)

Output: Approximated solution g

n← 0
residual← max(|Gj

i − F j
i (g0)|)

while n < nmax and residual > ftol do

gn+1 ← gn + β(G− F(gn))
for all pairs (i, j) do

if (gji )n+1 < 0 then

(gji )n+1 ← 0
end if

end for

residual← max(|Gj
i − F j

i (gn+1)|)
n← n+ 1

end while

return gn

Fig. 6. Algorithm for fixed-point solution.

gn+1 = gn +G− F(gn) (14)

A dumping factor β is introduced leading to the final form:

gn+1 = (1− β)gn + β(gn +G− F(gn))

= gn + β(G− F(gn)) (15)

The algorithm can be easily implemented. Two further

conditions are added. One is the termination condition, which

we have borrowed from the scipy function newton krylov,

considering a tolerance parameter ftol and a maximum number

of iterations nmax, so that the algorithm is terminated if the

iterations achieve nmax or if the max norm of G − F(g) is

less than ftol. Besides, the positiveness of the conductances

is reinforced in each iteration by bringing to zero those

conductances in which the damped Picard iteration gives a

negative value. The algorithm is shown in figure 6

III. RESULTS AND DISCUSSION

To verify and compare the proposed approaches, values

obtained from simulations or from a real pressure sensitive

mat were used.

A. Simulated arrays of resistors

In this section the results from the simulations are presented.

The key idea was to generate random arrays of 16x16 cell con-

ductances, g. From them, the equivalent conductance matrix

G was found using the algorithm in figure 4. Then, the cell

conductances were recovered from G using the approaches

proposed in section II-C and compared with the original ones.

These simulations constitute a first test for the approaches in

ideal conditions (there were no errors other than the numerical

ones). Besides the solution was known and could be compared

directly with the output of the solvers.

For these simulated arrays, the positiveness of the conduc-

tance solution was not imposed since the solution already gave

positive values except for few rare cases.

TABLE I
PERFORMANCE OF THE ALGORITHMS WITH RANDOM ARRAYS OF

CONDUCTANCES. MEAN AND STANDARD DEVIATION (IN PARENTHESES)
OF MARE AND EXECUTION TIME ARE GIVEN FROM 100 SIMULATIONS.

THE 95% PERCENTILE IS OBTAINED FROM ALL THE CELL ERRORS

(100× 256 VALUES) IN THE TOTAL SET OF SIMULATIONS.

Algorithm Time (s) MARE 95%
percentile

No correction - 24.3(6.1) 71.3
Heuristic 6.41(0.36)e−02 13.6(3.4) 40.2
Least square
(default)

5.45(0.21) 8.3(3.9)e− 15 2.4e− 14

Least square 3.27(0.59) 3.0(12)e − 05 3.9e− 05
Newton-Krylov
(default)

0.208(0.019) 4.2(4.1)e− 07 1.1e− 06

Newton-Krylov 0.192(0.049) 2.2(4.9)e− 04 5.8e− 04
Fixed-Point
(default)

2.00(0.16) 2.1(1.1)e− 10 5.7e− 10

Fixed-Point 0.747(0.088) 1.54(0.59)e−04 4.9e− 04

If the solution found is denoted by (gji )
′, the absolute

relative error (ARE) for a cell was:

ǫji =

∣

∣

∣

∣

∣

(gji )
′ − gji
gji

∣

∣

∣

∣

∣

(16)

The mean absolute relative error (MARE) for each array and

the execution time were obtained as the main figures of merit.

Each simulation was repeated 100 times to gather statistics.

Thus, 100 values of MARE and execution time were obtained

from which the mean and the standard deviation are going

to be shown. Besides, all the cell errors during the whole

run (100× 256 values) were also stored from which the 95%
percentile was extracted.

All algorithms except the heuristic approach have some

internal parameters that can be tuned to get a trade-off between

execution time and error. Thus, they were tested twice. Firstly

the default parameters provided by the numerical package

(or similar conditions for fixed-point solution) were selected.

Secondly, the parameters were tuned to have a 95% percentile

of ARE less than 0.001. For instance, this value is close to

the resolution of a 10 bit ADC, which seems a reasonable

threshold.

Two kinds of simulations were performed:

• In the first one, conductances were just random numbers

between a minimum and a maximum value with no

relation between neighbor cells.

• In the second one, a kind of object composed of two sup-

port zones was simulated (mimicking feet or a pressure

map from a seated person)

Each simulation is described in a separate subsection.

1) Uncorrelated random conductance arrays: In this case

each cell conductance was a random number following a uni-

form distribution between gmin = 2e−05 and gmax = 2e−02
with no correlation between neighbor sites. These bounds are

typical values in the applications we are interested in. The

results are shown in table I, in which the lack of correction is

also included for comparison, that is, taking gji ≈ Gj
i .

It it clear from table I that the lack of correction is not

an option if one wants to have a reasonable approximation to

the conductance, and therefore to the pressure exerted on the
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(a) (b)

Fig. 7. The left figure is an example of a generated conductance map (in S).
The right figure is a schematic representation of the distribution showing the
two parameters that have a random component, d and θ.

mat. The heuristic approach reduces a lot the MARE (from

24 to 13) but it is still high. Among the formal approaches,

these results confirm their soundness since error is almost zero

for practical purposes. The execution time ranges from a few

seconds to 0.192 s. If a single array is to be corrected all

of them could be acceptable. However for processing in real

time a sequence of arrays the Newton-Krylov method would

be preferred. As expected, processing time can be lowered at

the expense of increasing the error. Anyway, it is reasonable

(less than 0.001 for 95% percentile)

2) Simulating pressure maps with two regions: In this case,

conductances at each position of the matrix, g(r) with r =
(x, y)T , were generated using these equations:

g1(r) = (gmax − gmin)(exp(−
1

2
(r− r1)

TΣ1(r− r1)))

g2(r) = (gmax − gmin)(exp(−
1

2
(r− r2)

TΣ2(r− r2)))

g(r) = gmin + (g1(r) + g2(r)) (17)

The rationale behind these equations is the following: Since

in many pressure sensitive mats conductance is proportional

to pressure as a reasonable approximation, the conductance

map is also a representation of the pressure map. That is, the

pressure is distributed in two regions of centers r1, r2 with a

2D Gaussian-like dependence. An example is shown in figure

7. This has some similarity with the pressure distributions that

can be found when standing or sitting on the mat, in which the

weight is supported by body parts (feet or ischial tuberosities).

To generate several pressure distributions, the separation and

the angle between the regions had a random component, see

figure 7b.

The results for this kind of pressure shapes are found in

table II.

The lack of correction and the heuristic approach give again

bad error values. The formal approaches lead to errors higher

than in the case of uncorrelated conductances, table I, but

the limit of 0.001 for the 95% percentile is still feasible.

Computation time is also worse than in table I, especially with

the fixed-point approach that increases by more than an order

of magnitude. It seems that this kind of conductance maps,

closer to real measurements, is hard to be solved by the formal

methods.

TABLE II
PERFORMANCE OF THE ALGORITHMS WITH RANDOM ARRAYS OF

TWO-REGION CONDUCTANCES. MEAN AND STANDARD DEVIATION (IN

PARENTHESES) OF MARE AND EXECUTION TIME ARE GIVEN FROM 100
SIMULATIONS. THE 95% PERCENTILE IS OBTAINED FROM ALL THE CELL

ERRORS (100× 256 VALUES) IN THE TOTAL SET OF SIMULATIONS.

Algorithm Time (s) MARE 95%
percentile

No correction - 11.6(1.6) 33.8
Heuristic 6.42(0.18)e−02 2.36(0.59) 5.24
Least square
(default)

7.1(1.3) 1.2(2.7)e− 10 1.6e− 11

Least square 4.31(0.52) 0.018(0.12) 4.2e− 04
Newton-Krylov
(default)

0.402(0.098) 1.1(1.6)e− 03 0.0026

Newton-Krylov 0.54(0.13) 5.2(10)e − 05 1.2e− 04
Fixed-Point
(default)

31(10) 1.3(3.3)e− 05 1.2e− 06

Fixed-Point 13.6(5.2) 2.3(3.3)e− 04 4.5e− 04

Fig. 8. Values of ARE for all the simulations as a function of conductance
for the Newton-Krylov approach.

To check whether the relative error depends on conduc-

tance, figure 8 shows a plot of ARE versus conductance for

the Newton-Krylov approach (non default parameter values).

Each point corresponds to a cell and the whole run of 100
arrays is represented. The error is higher for low values

of conductances. This trend is observed for all the formal

approaches. The presence of some points with higher error

at low conductances also explains why the mean MARE error

is higher than the 95% percentile in some rows of table II.

B. Experiments with a real pressure sensitive mat

In this subsection the results of the algorithms tested on

measurements of a real mat are presented. We fabricated a

pressure sensitive mat composed of three layers. The two outer

layers were made of a flexible grid printed with a 3D printer, in

which conductive lines were formed on one of the sides using

copper adhesive tape 7 mm width. The layers were set with

the lines orthogonal. Then, a piezoelectric sheet of Velostat

was placed in the middle [23]. This material has become very

popular for low-cost applications of pressure sensors [9], [24],

[25], [26], [27]. In total, a 16x16 sensor array was built (32x32

cm2). The copper rows and columns are continuous along the

length of the mat, so that the conditions considered in this

paper apply. The sensitive cells were formed at the crossing

points of row and columns.
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TABLE III
PERFORMANCE OF THE ALGORITHMS WITH EXPERIMENTAL VALUES OF

CONDUCTANCES. MEAN AND STANDARD DEVIATION (IN PARENTHESES)
OF MARE AND EXECUTION TIME ARE GIVEN FROM 360 PRESSURE MAPS

OBTAINED. THE 95% PERCENTILE IS OBTAINED FROM ALL THE CELL

ERRORS (360× 256 VALUES) IN THE TOTAL SET OF ACQUIRED MAPS.

Algorithm Time (s) MARE 95%
percentile

No correction - 8.58(0.07) 13.06
Heuristic 6.53(0.35)e−02 0.85(0.59) 1.61
Least square
(default)

51(10) 1.77(0.47)e−02 0.079

Least square 8.26(0.29) 5.9(1.8)e− 02 0.19
Newton-Krylov 0.15(0.31) 1.5(2.8) 9.5
Fixed-Point 9.73(0.67)e−02 2.58(0.50)e−02 0.092

The measurement circuit consisted mainly of a communica-

tion unit, two analog multiplexers and a microcontroller. The

microcontroller activated sequentially rows and columns so

that the column was connected through a resistor to Vcc and

the row to ground. Thus a voltage divider circuit was formed,

similar to the one shown in figure 1a to measure cell (1, A).
The voltage at the column was measured with the ADC of the

microcontroller. The whole mat could be sampled each 0.1 s
(10 Hz). The raw measurement was sent via Bluetooth to a

PC, in which the data were analyzed in an off-line mode.

Unlike in the case of simulations, the true value of each

cell conductance was not known for a real mat. Therefore, the

error in this case was measured with respect to the equivalent

conductance obtained at each cell, taking as the true value the

measured one, G. Thus, if g′ was the solution obtained by

one of the algorithms, then the equivalent conductance was

obtained as G′ = F(g′), and the absolute relative error at

each cell was defined as:

ǫji =

∣

∣

∣

∣

∣

(Gj
i )

′ −Gj
i

Gj
i

∣

∣

∣

∣

∣

(18)

Apart from the error definition, the figures of merit were

the same as in the case of simulated conductances. For each

array the MARE and the execution time were obtained. A set

of several conductance maps were acquired to gather statistics.

Besides, the 95% percentile from all the cell errors was also

computed.

1) Standing position: independent arrays: In the first ex-

periment with real mats, a subject was standing on the mat in a

comfortable position. He was asked to bend slightly the body

and then move in circles. A total of 360 arrays were collected.

In this subsection, each acquired array is taken independently.

Figure 9 shows and image of the experiment and 4 typical

conductance maps obtained.

The summary of performance is shown in table III. Unlike in

the case of simulations, the constraint of positive conductance

was applied when possible (Least Square and fixed-point

options). If not, many cell conductances converged to negative

values. The Newton-Krylov with default parameters is not

shown since the associated package function often got stuck

and gave exception due to lack of convergence.

Several aspects are worth highlighting from these results

and the conditions under which they were obtained. The errors

(a)

(b)

Fig. 9. Images of the experiment: The subject an a typical position (top) and
four values of conductance maps (bottom). Conductance is in S.

are higher than in the simulations. Thus, the parameters of

the algorithms could not be tuned to reach a 0.001 error for

the value of the 95% percentile. This turned out to be too

fine for real experiments. Therefore, only for the Least Square

approach the results for two sets of parameters are presented

in table III. The default configuration is too slow, almost 1 min

for processing each array (51 s). The computation time can be

reduced by changing the parameters but it is not competitive

for real-time applications.

The Newton-Krylov approach, which seemed to be the most

suitable for simulated conductances, gave unacceptable errors

when the values were obtained from real mats. Its parameters

had to be tuned to avoid convergence problems but there was

no way to reduce the errors further. Besides, this algorithm

does not take into account constraints and many conductance

solutions had negative values.

Concerning the fixed-point approach, 25 iterations were

used since the error almost did not decrease beyond this

number. Thus, only a set of parameters is shown in table

III, which already led to the best execution time, 0.0973 s.

This value could allow a real-time analysis in this particular

case since the whole array was sampled at 10 Hz. The 95%

percentile error was not far from that of the Least Square

approach with default parameters.

To sum up, in this case the fixed-point solution could be

selected since it has several advantages over the other ap-

proaches. It is likely that intrinsic errors in the data acquisition

system have an influence on the error of the mathematical
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Fig. 10. Values of ARE for all the experimental conductance maps using the
fixed-point solution.

solution. In figure 10 the errors as a function of the conduc-

tance are shown. The higher errors are concentrated in the low

conductance part of the graph. This can be due to numerical

aspects of the algorithms, since the simulations shows the same

trend, figure 8, or to measurement errors.

The inconsistency between the results of the Newton-Krylov

approach with simulated and experimental values deserves

an explanation. One of the reasons can be the presence of

measurement errors. As a matter of fact, we tested that using

simulated values with an injection of random noise as low

as 4% in the equivalent conductance matrix G enabled us

to reproduce the problems found with the real mat: many

cell conductances turned out to be negative and convergence

problems arose. On the other hand, the fixed-point approach,

although less sophisticated, allows a modification to reinforce

positiveness. Furthermore, it never gets stuck and can be easily

tuned with the β parameter to obtain smooth corrections at

each time step and with the number of iterations to control

execution time.

2) Standing position: sequential measures: The set of con-

ductance maps is the same as in the previous subsection but

two initializations were tested. With a single measurement of

the matrix, the initial iterate g0 = G was taken in previous

sections with a maximum number of 25 iterations in the fixed-

point formulation. However, for a sequence of measurements

it is reasonable to expect that the solution at time t can

be used as the initial iterate for t + 1 since the difference

between two consecutive pressure distributions should not be

very high. In this way we wanted to take advantage of the

sequential nature of the data using the fixed-point formulation

and reducing the maximum number of iterations to 15. Figure

11 shows the execution time and the error as a function of

time. In this case, taking a better initial iterate decreased

the execution time without changing the error: In the bottom

graph, the lines corresponding to the two initializations are

almost indistinguishable. In fact, the average error with the

new tested initialization is 0.0258, exactly as in table III.

Therefore, in a sequence of real pressure maps a further

improvement in processing time can be achieved by selecting

a suitable initial iterate. This does not seem to influence the

error.

Fig. 11. Time execution and MARE for a sequence of conductance maps.
The solution of a map feeds the first iterate of the next one (blue dashed line)
or the initial iterate is G (red solid line).

TABLE IV
PERCENTAGE OF WEIGHT WITHIN REGION A IN FIGURE 12A BEFORE AND

AFTER CORRECTION.

No correction Heuristic Least-Square Fixed-point

16.3% 10.6% 3.5% 4.6%

3) Removal of ghost object: The effect of crosstalk in

pressure sensitive maps is plain if the pressure is represented

as an image. There can be ghost objects that correspond to

zones with fictitious pressure where there is no real object on.

In this subsection, an experiment to highlight the removal of

a ghost object is presented. A subject stood on the mat with

a relative displacement between the feet along the anterio-

posterior direction. Figure 12 shows a scheme and the results

of the experiment. Figure 12a presents the relative position

of the feet and an outline of the external feet shape. Region

A, in the upper right corner, is empty. Figure 12b shows the

conductance map obtained directly from the measurement (we

assume that pressure and conductance are proportional, which

is reasonable for Velostat). The support zones appeared with

a rather rectangular shape. Besides, there was some fictitious

pressure in region A. It would be hard to deduce the relative

displacement of the feet from that image. After the correction,

the ghost object almost disappeared (figure 12c) and the foot

shape was not so rectangular.

A quantitative measure of the ghost object removal was

obtained by calculating the percentage of weight in region

A before and after correction. This is shown in table IV. The

ideal value is 0. Without correction, the ghost object seems

to carry a 16.3% of the weight. The corrections lower this

value. The value obtained with the Least-Square approach

is the closest to the ideal although not very different from

the fixed-point approach. The correction reduces the fictitious

weight by a factor up to 4.7.
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(a)

(b)

(c)

Fig. 12. Visual effect of removing ghost objects in area A. Conductance maps
are measured in S. Schematic representation of feet (a), measured conductance
map (b) and corrected conductance map (c).

IV. CONCLUSIONS

Pressure sensitive mats made of resistive sensor arrays

present a crosstalk problem if the conductive lines run all along

the mat. In this case, ghost objects can appear in zones without

pressure exerted on them. In this paper, we have presented

several algorithms to remove this effect after analyzing the

array with circuit theory. The key point is that the value

returned by the measurement system when a cell is scanned

is the equivalent resistance between a given row-column pair,

instead of the desired cell resistance. For simulated values

of resistor networks, several algorithms can recover the true

value of the array with negligible error. The Newton-Krylov

is the fastest method among them. On the other hand, for

experiments with a real mat, the error is higher and a fixed-

point approach is best suited. It can be easily tuned to find

a compromise between error and computation time. It can

find a solution in less than 0.1 s for 16x16 arrays. We

have also shown visually that a ghost object disappears after

the application of the algorithm. The Newton-Krylov method

seems to be very sensitive to measurement errors.

The software solutions can be easily implemented in any

kind of prototype or commercial product since they rely on

standard numerical packages. Furthermore, their existence has

some implications for manufacturing processes. The advantage

is clear especially for home made prototypes. The proposed

approaches avoid the annoying addition and manual soldering

of components (for instance, one diode per cell). For standard

production processes the integration of components in flexible

printed circuit boards would not be so hard, yet it leads to a

higher cost and possibility of component failure. With respect

to new research developments on sensor fabrication, the inte-

gration with reliable electric contacts and connectors is still a

challenge, as pointed out in [4]. Keeping the connections to a

minimum is valuable in this context and the proposed methods

allow the typical row-column addressing setup, instead of

manufacturing a separated connection for each cell.

The solutions presented in this paper can be easily extended

to arrays of capacitive sensors or to include the pull-up or

pull-down resistors in conductive lines that many designs

incorporate.

There are some error sources that are not covered by the

proposed approach. For instance, there is also a crosstalk

between neighbor cells due to mechanical coupling. Our

solutions does not deal with this kind of interference.
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A. M. Hernńdez-Valdivieso, “Test and fabrication of piezoresistive sen-
sors for contact pressure measurement,” Revista Facultad de Ingenierı́a

Universidad de Antioquia, pp. 47 – 52, 03 2017.

[25] S. Salibindla, B. Ripoche, D. T. H. Lai, and S. Maas, “Characterization
of a new flexible pressure sensor for body sensor networks,” in 2013
IEEE Eighth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing, April 2013, pp. 27–31.

[26] H. Liu, X. Xie, M. Millar, M. Edmonds, F. Gao, Y. Zhu, V. J. Santos,
B. Rothrock, and S. Zhu, “A glove-based system for studying hand-
object manipulation via joint pose and force sensing,” in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Sep.
2017, pp. 6617–6624.

[27] J. Tolvanen, J. Hannu, and H. Jantunen, “Hybrid foam pressure sen-
sor utilizing piezoresistive and capacitive sensing mechanisms,” IEEE
Sensors Journal, vol. 17, no. 15, pp. 4735–4746, Aug 2017.


